a2 United States Patent

Poolla et al.

US009411688B1

US 9,411,688 B1
Aug. 9,2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM AND METHOD FOR SEARCHING
MULTIPLE BOOT DEVICES FOR BOOT

(71)
(72)

(73)

")

@
(22)

(1)

(52)

(58)

(56)

IMAGES
Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:
Filed:

Int. Cl1.

GO6F 11/14
HO3K 19/177

U.S. CL
CPC

Xilinx, Inc., San Jose, CA (US)

Ramakrishna G. Poolla, Hyderabad

(IN); Yatharth K. Kochar, Hyderabad
(IN); Krishna C. Patakamuri,

Hyderabad (IN)

XILINX, INC., San Jose, CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 285 days.

14/103,723

Dec. 11, 2013

(2006.01)
(2006.01)

Field of Classification Search

CPC

U.S. PATENT DOCUMENTS

6,446,203
6,781,407
7,199,608
7,301,822
7,328,335
7,420,392
7,425,843
7,576,561
7,631,223

Bl
B2
Bl
Bl
Bl
B2
Bl
Bl
Bl

7,653,820
7,689,726

Bl
Bl

References Cited

9/2002
8/2004
4/2007
11/2007
2/2008
9/2008
9/2008
8/2009
*12/2009

Schultz
Trimberger

Huang
Spinti

1/2010
3/2010

Trimberger

Aguilar et al.

Walstrum, Jr. et al.
Sundararajan et al.
Schultz et al.
Edwards et al.

Sundararajan et al.

GO6F 11/1417 (2013.01); HO3K 19/17764

(2013.01)

GOG6F 11/1417; HO3K 19/17764
See application file for complete search history.

GO6F 11/1417

9,152,794 Bl 10/2015 Sanders et al.
9,165,143 Bl 10/2015 Sander et al.
9,230,112 Bl 1/2016 Peterson et al.
2004/0078679 Al* 4/2004 Caglecccoc.c.. GO6F 9/4406
714/36
2004/0153724 Al 8/2004 Nicholson et al.
2005/0125396 Al 6/2005 Liu
2006/0026429 Al 2/2006 Kudo et al.
2007/0038685 Al 2/2007 Chan et al.
2008/0141017 Al 6/2008 McCoull et al.
2008/0256366 Al 10/2008 Dale et al.
2009/0089570 Al 4/2009 Andrianov
2009/0204803 Al 8/2009 Cox et al.
2009/0288160 Al* 11/2009 Esligerc.cccc... GO6F 21/575
726/17
2009/0327680 Al 12/2009 Dale et al.
(Continued)
OTHER PUBLICATIONS

Elinux.org, “RPi U-Boot,” Embedded Linux Wiki, Dec. 2, 2012, web
Feb. 18, 2014, <http:/elinux.org/index.php?title=RPi_ U-boot
&oldid=197048&print>.

Huang, Andrew, “Keeping Secrets in Hardware: the Microsoft Xbox
Case Study,” AI Memo 2002-008, May 26, 2001, pp. 1-15, Massa-
chusetts Institute of Technology, Artificial Intelligence Lab, Cam-
bridge, Massachusetts, USA.

U.S. Appl. No. 13/775,151, filed Feb. 23, 2013, Peterson et al.

U.S. Appl. No. 13/833,177, filed Mar. 15, 2013, Sanders et al.

(Continued)

Primary Examiner — Albert Wang

(74) Attorney, Agent, or Firm — LeRoy D. Maunu; Jonathan
Soike

(57) ABSTRACT

In some disclosed implementations, a system-on-chip on a
first IC die includes a boot loader circuit configured to search
a first boot device, of a plurality of boot devices coupled to
and external to the first IC die, for an uncorrupt boot image.
The boot loader circuit is configured to search a second boot
device of the plurality of boot devices for an uncorrupt boot
image, in response to failing to find an uncorrupt boot image
in the first boot device. The boot loader is also configured to
load a set of instructions included in the uncorrupt boot image
into a memory circuit of the SOC, in response to finding an

19 Claims, 4 Drawing Sheets

Boot device 1
(6.9., Computer)

112
Boot device 2
(8.9, SD card)

114
Boot device 3
{e.g., USB drive)

714727 uncorrupt boot image.
120
System-on-chip (SOC)

Processor

ﬁa I P 12& Fabri
149 rogrammable Fabric
RAM

B,

Boot loader

Controller

Configuration (¢
1
1
]
1
i
!

US 9,411,688 B1
Page 2

(56) References Cited OTHER PUBLICATIONS

U.S. Appl. No. 14/019,323, filed Sep. 5, 2013, Sanders et al.
Xilinx, Inc., Zyng-7000 All Programmable SoC Software Developers
Guide, UGS821 (v3.0), Oct. 16, 2012, pp. 1-42, Xilinx, Inc., San Jose,

U.S. PATENT DOCUMENTS

2010/0070749 Al 3/2010 Tsai

2010/0241837 Al 9/2010 Concorso California, USA.

2011/0265183 Al 10/2011 Wu et al. Xilinx, Inc., Zyng-7000 All Programmable SoC Technical Reference
2012/0191960 Al 7/2012 Piwonka et al. Manual, UG585 (v1.4), Nov. 16, 2012, Chapters 6, 27, 28, 32 (76
2012/0210115 Al 8/2012 Park et al. pages), Xilinx, Inc., San Jose, California, USA.

2013/0042098 Al 2/2013 Baik et al. Xilinx, Zyng-7000 All Programmable SoC, Technical Reference
%88;852;2 ﬁ} lgggg E{jﬁ,":{‘;}“ al. Guide, UG585v1.5, Mar. 7, 2013, pp. 1-1770, Xilinx, Inc., San Jose,

2014/0237223 Al* 872014 Chudgar GO6F o/4408 ~ California, USA.
7132 U.S. Appl. No. 14/527,709, filed Oct. 29, 2014, Kochar et al.

2014/0281455 Al 9/2014 Kochar . .
2015/0106609 Al 4/2015 Koszek * cited by examiner

US 9,411,688 B1

Sheet 1 of 4

Aug. 9,2016

U.S. Patent

! Aiowauw b
I uonemnByuo) ". |
| J——
Lo 0% ____y
r—_— _—_—_______ -
| | Aowsw |
_ | olpeion-uoN “
| [
|| Jefoquog L __ W
3 UoleinByuon H
[T7]
| sepeonoog || FOT
44 vel
; o]
I
Y | T
o
alqe4 s|qewwelbold o7l | O
%l , 0¢}
- ~ 10558001
74 44
(008S) diyo-uo-weyshs
174

/

(sAup gsn “69)
© 801A8p 1009

PiE

(p1e2 s “6°9)
Z 80l1A8p 1004

147

(1zIndwon “6°9)
| 80IABp 1009
0rF

U.S. Patent Aug. 9,2016 Sheet 2 of 4 US 9,411,688 B1

202
Select first boot device from boot list

204
Search selected boot device for boot image

.

206 No 208
Select next device in - <\Image Iocated?/>
boot list ~_
Yes T
210

Verify located boot image

v

RS
/// 212 \\\ Yes
<__Image corrupted?

I 7
~_

lNo

220
Initialize system-on-chip using the uncorrupted boot image

222
Load processor instruction in boot image into memory

224
Provide configuration datastream in boot image to
configuration controller
(Optional)

FIG. 2

U.S. Patent Aug. 9,2016 Sheet 3 of 4 US 9,411,688 B1

TN
| Startup)

/

7 s
Yes 02 No
———_ Boot list available? >————

~ 7
\\\\ ////

304
Retrieve a boot list of device IDs and
respective priorities from non-volatile memory

310
Determine connected devices

y

306
Determine device IDs of connected devices

312
Order connected devices based on
characteristics of the connection devices
(e.g., transfer speed of the connection
devices) to create a prioritized list

308
Order the connected devices based on
priorities indicated in the first list to create a
prioritized list

320

Search the connected devices for an
uncorrupted boot image in the order specified
in the prioritized list

FIG. 3

US 9,411,688 B1

Sheet 4 of 4

Aug. 9, 2016

U.S. Patent

. [' |
¥ 'Ol _ !
| =T | =% | _
|5 | i T0F SLOW
A oo N o 5 I ===t I B
e N A L
] 0% S|
174014 ! 1T Ak " m%w_m,q._m_om
]
5 T L= p
i bO¥
207 S
| ALY
307 sdsa
T 1T T 1 L1 1] L1 11 I T 1T 1 157 ||
A 1 A i o 70 L e e “
T07 Sivag
T 1 | I I | I | | I | SAr L T 11 | |
O AP B A c0¥ 819 7911]
_ LS Qe Toron SOPSSHI0TO / DIANOD 0
| froy e o =
¥ S A O M T
_ o || B IO <0y 5819 T 17
1 ||| 1dsa g _ i
| - | T07 Svg
— P| —— — — — 07 || -
o 0 H ST W H T e
_ £07 SWvg
0 P AU 1 T N 5 ———
¢y s819
.
y0% S80I
90t 10 €0 411
207 5910
— e TOF SWag
r 17 N 0~ I
— | 207 5910
! w‘ﬁw_______ﬂﬁ________....___
& _ T0F SLOW
20y 1 e
o LY e
\ N [I\ J
00% L ! 807 NOILNGIMLSIO YOO /9IANOD

US 9,411,688 B1

1

SYSTEM AND METHOD FOR SEARCHING
MULTIPLE BOOT DEVICES FOR BOOT
IMAGES

FIELD OF THE INVENTION

The disclosure generally relates to initialization of pro-
grammable integrated circuits (ICs), and more particularly to
the searching of boot devices connected to an IC for boot
images.

BACKGROUND

An embedded system, in general, refers to a combination
of hardware and software that is specifically designed for a
particular application or purpose. One example of a hardware
platform that can be used to implement an embedded system
is a programmable IC. Some programmable ICs include a
processor capable of executing program code and provide a
particularly robust platform upon which an embedded system
can be built.

Prior to use within any specific application, a program-
mable IC must undergo a configuration process, where pro-
grammable resources of the programmable IC are configured
with a configuration data stream, such as a bitstream, that
specifies a configuration of the hardware resources that
implement a particular circuit design. Programmable ICs that
include a processor, such as system-on-chip (SOC) devices,
must also undergo a boot process to load a set of processor
instructions into an integrated memory disposed on the pro-
grammable IC. For instance, the boot process may load a set
of processor instructions of an operating system into the
memory at startup. For ease of reference, configuration and
boot processes may be referred to as initialization processes
herein. Also, initialization data may be used to generally refer
to either processor instructions for initialization of a proces-
sor and/or a configuration data stream for initialization of
programmable resources of a programmable IC.

During the initialization processes, initialization circuits
cause the programmable IC to locate and retrieve a boot
image including initialization data from a designated periph-
eral boot device having initialization data stored in a non-
volatile memory. The initialization circuits may include, for
example, a boot loader circuit and/or configuration control
circuit. The initialization circuitry uses the initialization data
to configure the programmable IC. For example, the initial-
ization circuits may copy a set of processor instructions in the
retrieved boot image to an internal volatile memory (RAM)
for execution by the processor. However, the boot image
stored in the boot device may be corrupt or may be otherwise
unretrievable, thereby preventing the programmable IC from
initializing at startup.

One previous approach mitigates the problems presented
by corrupt boot images by storing master and backup boot
images on the designated boot device. In response to the
master boot image being corrupt, the initialization circuit uses
the backup boot image on the designated boot device to
initialize the programmable IC. In this manner, adverse
effects of a corrupt master boot image are mitigated. This
initialization process can be implemented with little addi-
tional circuitry and space on the programmable IC because
the initialization circuit is already configured to retrieve data
files from the designated boot device. Due to the limited space
available on programmable ICs, this approach is particularly
advantageous.

SUMMARY

One example IC is a SOC that includes programmable
hardware resources and a configuration control circuit dis-

10

20

40

45

55

65

2

posed on a first IC die. The configuration control circuit is
configured to program the programmable hardware resources
with a configuration data stream in response to the configu-
ration data stream. The SOC device also includes a memory
circuit and a processor disposed on the first IC die. The
processor is coupled to the memory circuit and program-
mable hardware resources, and is configured to retrieve and
execute instructions from the memory circuit and communi-
cate data with the programmable hardware resources. A boot
loader circuit is also disposed on the first IC die. The boot
loader circuit is configured to search a first boot device, of a
plurality of boot devices coupled to and external to the first IC
die, for an uncorrupt boot image. The boot loader circuit is
configured to search a second boot device of the plurality of
boot devices for an uncorrupt boot image, in response to
failing to find an uncorrupt boot image in the first boot device.
The boot loader is also configured to load a set of instructions
included in the uncorrupt boot image into the memory circuit,
in response to finding an uncorrupt boot image.

Another example IC described herein, includes program-
mable hardware resources and a configuration controller dis-
posed on a first IC die. The configuration control circuit is
configured to, in response to a configuration data stream,
program the programmable hardware resources with the con-
figuration data stream. A boot loader circuit is disposed on the
first IC die. At power-on of the IC, the boot loader is config-
ured to search a first boot device, of a plurality of boot devices
disposed on respective IC dies coupled to the first IC die, for
an uncorrupt boot image. The boot loader is configured to
search a second boot device, of the plurality of boot devices,
for an uncorrupt boot image in response to failing to find an
uncorrupt boot image in the first boot device. The boot loader
is also configured to provide a configuration data stream,
included in the uncorrupt boot image, to the configuration
control circuit in response to finding an uncorrupt boot image.

A method of configuring a SOC having programmable
hardware resources, a processor, and a memory is also
described. Using a boot loader circuit disposed on the pro-
grammable IC, a plurality of boot devices disposed on respec-
tive ICs and coupled to the first IC are searched for a valid
boot image. More specifically, a first boot device is searched
for an uncorrupt boot image. In response to failing to find an
uncorrupt boot image in the first boot device, a second boot
device is searched for an uncorrupt boot image. In response to
finding an uncorrupt boot image, a set of instructions included
in the uncorrupt boot image is loaded into the memory. Using
the processor, the set of instructions loaded into the memory
are retrieved and executed.

It will be appreciated that variations of the semiconductor
devices and method are set forth in the Detailed Description
and Claims, which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and features of the circuits and methods
will become apparent upon review of the following detailed
description and upon reference to the drawings in which:

FIG. 1 shows a system-on-chip having a boot loader cir-
cuit;

FIG. 2 shows a flowchart of a process for configuration of
a system-on-chip;

FIG. 3 shows a flowchart of a process for determining an
order in which boot devices are searched for an uncorrupt
boot image; and

US 9,411,688 B1

3

FIG. 4 shows a detailed block diagram of an example
programmable IC that may be initialized by searching a plu-
rality of boot devices for an uncorrupt boot image.

DETAILED DESCRIPTION OF THE DRAWINGS

In one or more applications, a programmable IC includes a
boot loader circuit configured to automatically search a plu-
rality of boot devices at start-up for an uncorrupt boot image
including initialization data, such as, a set of processor
instructions and/or a configuration data stream. In some
implementations, a boot loader circuit is configured to
retrieve a boot image from a first designated boot device, and
in response to being unable to find a boot image on the first
designated boot device, search one or more other boot devices
connected to the programmable IC for an uncorrupt boot
image.

In some implementations, the boot loader circuit is config-
ured to automatically detect and search boot devices con-
nected to the programmable IC for a valid boot image. The
boot loader circuit may be configured to detect and prioritize
searching of boot devices based on various characteristics of
the boot devices. For instance, the boot loader circuit may
reduce start-up time by prioritizing boot devices having
higher transfer speeds.

In some implementations, the boot loader circuit is config-
ured to search the plurality of boot devices in an order indi-
cated in a settings file stored in a non-volatile memory. The
non-volatile memory may be disposed on the programmable
IC or may be disposed on an external IC, such as one of the
boot devices connected to the programmable IC. For ease of
reference, the order in which the boot devices are searched
may be referred to as a boot order.

In some implementations, the boot order specified by the
settings file may be adjusted in response to user input. Con-
figuration of the boot order may be useful as a security mea-
sure to prevent an end-user from loading an unauthorized
boot image by connecting an unauthorized boot device. The
boot loader circuit may further improve security by disabling
adjustment of the boot order in the configuration settings file,
in response to user input. For instance, the boot loader circuit
may be configured to prevent modification of the boot order in
response to an e-fuse being programmed to interrupt current.
Alternatively, modification to the boot order may be pre-
vented by storing the boot order in a write-once memory, such
as an e-fuse memory.

The disclosed examples are applicable to initialization of a
variety of programmable circuits, such as programmable
hardware resources and/or processors, on a programmable
IC. In some implementations, a boot image retrieved by a
boot loader circuit includes a configuration data stream for
initialization of programmable hardware resources of a pro-
grammable IC. A configuration data stream provided in a boot
image may be used for configuration of programmable ICs
with processors or without processors. For a programmable
IC having a processor, a boot image may include a configu-
ration data stream for initialization of programmable hard-
ware and/or a set of processor instructions for initialization of
the processor.

For instance, in some implementations, the boot image
may be used for initialization of the processor but not for
initialization of programmable hardware resources. In some
other implementations, the boot image may be used for ini-
tialization of programmable hardware resources but not for
initialization of the processor. In some other implementa-
tions, the boot image may be used for initialization of both
programmable hardware resources and the processor. For

10

15

20

25

30

35

40

45

50

55

60

65

4

ease of explanation, some examples may be primarily
described with reference to initialization of a processor
included on a programmable IC. It is understood that such
examples may alternatively/additionally be adapted for ini-
tialization of programmable resources of a programmable IC.

FIG. 1 shows a system-on-chip having a boot loader cir-
cuit. The system-on-chip 120 is disposed on a first IC die and
includes a set of programmable hardware resources 126 and a
processor 122. The processor is configured to retrieve and
execute processor instructions from a memory 140, which is
also disposed on the first IC die. A configuration controller
146 is configured to program the programmable hardware
resources to implement a circuit specified by a configuration
data stream. The processor may be configured to communi-
cate data with circuits implemented by the programmable
hardware resources via a communication interface 124.

The system-on-chip 120 includes a boot loader circuit 142
configured to retrieve a boot image from multiple different
boot devices external to the first IC die, and connected to
respective input/output (I/O) ports 130, 132, and 134 of the
system-on-chip. In this example, a computer 110, an SD card
112, and a USB drive 114 are respectively connected to the
/O ports 130,132, and 134. The plurality of boot devices may
include various types of non-volatile memory including, but
not limited to, quad serial peripheral interface (SPI), flash
memory, NAND memory, NOR memory, battery-backed
memory, and SD card memory. In some implementations,
different ones of the boot devices communicate data using
different communication protocols and interfaces including,
for example, PCle, ISA, Serial ATA, JTAG Ethernet, 802.11,
and Bluetooth.

The boot loader circuit 142 is configured to automatically
search multiple boot devices at start-up for an uncorrupt boot
image including initialization data. In some implementations,
the boot loader circuit 142 is configured to retrieve a boot
image on a first designated boot device, such as device 110,
and in response to being unable to find a viable boot image on
the first designated boot device, search one or more other boot
devices, such as devices 112 and 114, for an uncorrupt boot
image.

In response to retrieving an uncorrupt boot image, the boot
loader circuit 142 copies the boot image, such as a set of
processor instructions that implements an operating system,
into RAM 140. Additionally, the boot loader circuit 142 may
also provide a configuration data stream included in the boot
image to configuration controller 146. Alternatively, the con-
figuration controller 146 may retrieve a configuration data
stream from an external configuration memory 150 without
assistance from the boot loader circuit 142.

In some implementations, the boot order may be adjusted
dynamically at runtime based on various characteristics of
boot devices connected to the system-on-chip. For instance,
in some implementations, the boot loader circuit 142 is con-
figured to detect and prioritize searching of boot devices
based on transfer speed, error-rate, and/or statuses of the boot
devices.

In some other implementations, the boot loader circuit 142
is configured to search the plurality of boot devices in a
predetermined boot order indicated in a settings file stored in
a non-volatile memory. The boot order may be stored in a
non-volatile memory 144 on the system-on-chip or may be
stored in a non-volatile memory external to the system-on-
chip. For instance, the boot order may be stored on one of the
boot devices connected to the system-on-chip.

In some implementations, the boot order specified by the
settings file may be adjusted in response to user input. As
indicated above, configuration of the boot order may be use-

US 9,411,688 B1

5

ful as a security measure to prevent an end-user from loading
anunauthorized boot image by connecting a new boot device.
Authentication techniques, such as password and/or encryp-
tion, may be performed prior to allowing a user to adjust the
boot order. The boot loader circuit 142 may also be configured
to disable adjustment of the boot order in the configuration
settings file, in response to user input. For instance, in one
implementation, the boot loader circuit 142 is configured to
prevent modification of the boot order in response to an e-fuse
being programmed to block current.

FIG. 2 shows a flowchart of a process for configuration of
a system-on-chip. At block 202, a first, or master, boot device
is selected from a boot list. The selected boot device is
searched at block 204 for a boot image. If no boot image is
located, decision block 208 causes the next device in the boot
list to be selected at block 206. The selected boot device is
searched for a boot image at block 204. This process repeats
until either a boot image is located or all boot devices have
been searched.

Ifabootimage is located in a selected boot device, decision
block 208 causes the process to verify the located boot image
is uncorrupt at block 210. Various methods may be used to
verify that a boot image is uncorrupt. For example, in one
implementation, a boot loader circuit may calculate a check-
sum for a header of the boot image and compare the calcu-
lated checksum to a value included in the header. Various
implementations may utilize a number of different algorithms
to compute the checksum including, but not limited to, cyclic-
redundancy-check (CRC), message-digest (MD), SHA, and/
or Keccak. Alternatively or additionally, a checksum may be
calculated and verified for a data portion of the boot image.
The checksum of the data portion may be verified in response
to determining that the checksum of the header is uncorrupt.
In some implementations, signature authentication may addi-
tionally or alternatively be performed to verify integrity or
origin of a boot image. Other verification methods may also
be used.

If the boot image is determined to be corrupt at decision
block 212, the search for a boot image is continued at block
204 on the same or on another boot device. If the image is not
corrupt at decision block 212, the system-on-chip is initial-
ized using the uncorrupt boot image at block 220. As part of
the initialization process 220, a set of processor instructions
included in the boot image is loaded into a memory of the
system-on-chip at block 222. In some implementations, a
configuration data stream included in the boot image is pro-
vided to a configuration controller at block 224.

FIG. 3 shows a flowchart of a process for determining an
order in which boot devices are searched for an uncorrupt
boot image. If a boot list is available at startup of a program-
mable IC, decision block 302 directs the initialization process
to retrieve the boot list from a non-volatile memory at block
304. The boot list includes a list of device identifiers (IDs) and
respective priorities. Device IDs of connected devices are
determined at block 306. At block 308, a list of the connected
devices is ordered based on priorities indicated in the boot list
to create a prioritized list. At block 320, connected devices are
searched for an uncorrupt boot image in the order specified in
the prioritized list according to the process of FIG. 2.

Ifaboot list is unavailable at startup of a programmable IC,
decision block 302 directs the initialization process to deter-
mine devices connected to the programmable IC at block 310.
Atblock 312, a list of the connected devices is ordered based
on various characteristics of the connected devices to produce
a prioritized list. For example, some implementations reduce
boot times by prioritizing searching of boot devices according
to the data transfer rates of the devices. As another example,

10

15

20

25

30

35

40

45

50

55

60

65

6

some implementations may prioritize searching of boot
devices based on the status of the boot devices at the time of
startup. For instance, lower priorities may be assigned to boot
devices that are powered down at the time of startup. As
another example, a boot loader circuit may log incidents of
failure and prioritize the boot devices based on the logged
failure count. An example of an incident of failure is a
retrieved boot image being corrupt. Prioritization based on
failure count may prevent corrupt boot images from being
unnecessarily retrieved each time the programmable IC is
started up. Other characteristics of the boot devices may also
be used to prioritize the order in which boot devices are
searched for boot images at startup. At block 320, connected
devices are searched for an uncorrupt boot image in the order
specified in the prioritized list.

For ease of explanation, the above examples are primarily
described with reference to a single stage initialization pro-
cess. However, various aspects are also applicable to multi-
stage initialization processes, where different boot images are
used in different stages. For instance, a first boot image may
be used in a first stage to configure a first set of programmable
resources to implement a first set of circuits. After completing
the first boot stage, a second boot image may be used in a
second boot stage to configure a second set of programmable
resources to implement a second set of circuits. In some
scenarios, one or more of the first set of programmable
resources may be reconfigured in the second boot stage to
implement one or more of the second set of circuits. In each
stage of a multi-stage initialization process, a boot loader
circuit may be adapted to search a plurality of boot devices for
uncorrupt copies of the respective boot images used in the
stage, as described above.

As indicated above, the disclosed examples may be applied
to a variety of programmable ICs. Although the above
examples are primarily described with reference to a pro-
grammable IC having an embedded processor, the examples
may be adapted for initialization of other types of program-
mable ICs including, e.g., programmable ICs without a pro-
cessor or with a processor implemented using programmable
hardware resources. FIG. 4 shows a more detailed block
diagram of an example programmable IC that may be initial-
ized by searching a plurality of boot devices for an uncorrupt
boot image, as described above. The block diagram shown in
this example depicts one type of programmable IC known as
a field programmable gate array (FPGA). FPGAs can include
several different types of programmable logic blocks in the
array. For example, FIG. 4 illustrates an FPGA architecture
(400) that includes a large number of different programmable
tiles including multi-gigabit transceivers (MGTs 401), con-
figurable logic blocks (CLBs 402), random access memory
blocks (BRAM:s 403), input/output blocks (IOBs 404), con-
figuration and clocking logic (CONFIG/CLOCKS 405), boot
loader circuitry (BOOT) 490, digital signal processing blocks
(DSPs 406), specialized input/output blocks (/O 407), for
example, e.g., clock ports, and other programmable logic 408
such as digital clock managers, analog-to-digital converters,
system monitoring logic, and so forth. Some FPGAs also
include dedicated processor blocks (PROC 410) and internal
and external reconfiguration ports (not shown).

In some FPGAs, each programmable tile includes a pro-
grammable interconnect element (INT 411) having standard-
ized connections to and from a corresponding interconnect
element in each adjacent tile. Therefore, the programmable
interconnect elements taken together implement the pro-
grammable interconnect structure for the illustrated FPGA.
The programmable interconnect element INT 411 also

US 9,411,688 B1

7

includes the connections to and from the programmable logic
element within the same tile, as shown by the examples
included at the top of FIG. 4.

For example, a CLB 402 can include a configurable logic
element CLE 412 that can be programmed to implement user
logic plus a single programmable interconnect element INT
411. ABRAM 403 can include a BRAM logic element (BRL
413) in addition to one or more programmable interconnect
elements. Typically, the number of interconnect elements
included in a tile depends on the width of the tile. In the
pictured FPGA, a BRAM tile has the same width as five
CLBs, but other numbers (e.g., four) can also be used. A DSP
tile 406 can include a DSP logic element (DSPL 414) in
addition to an appropriate number of programmable intercon-
nect elements. An IOB 404 can include, for example, two
instances of an input/output logic element (IOL 415) in addi-
tion to one instance of the programmable interconnect ele-
ment INT 411. As will be clear to those of skill in the art, the
actual [/O pads connected, for example, to the /O logic
element 415 are manufactured using metal layered above the
various illustrated logic blocks, and typically are not confined
to the area of the input/output logic element 415.

In the pictured FPGA, a horizontal area near the center of
the die (shown shaded in FIG. 4) is used for configuration,
clock, and other control logic. Vertical areas 409 extending
from this horizontal area are used to distribute the clocks and
configuration signals across the breadth of the FPGA.

Some FPGAs utilizing the architecture illustrated in FIG. 4
include additional logic blocks that disrupt the regular row
structure making up a large part of the FPGA. The additional
logic blocks can be programmable blocks and/or dedicated
logic. For example, the processor block PROC 410 shown in
FIG. 4 spans several rows of CL.Bs and BRAM:s.

Note that FIG. 4 is intended to illustrate only an exemplary
FPGA architecture. The numbers of logic blocks in a row, the
relative heights of the rows, the number and order of rows, the
types of logic blocks included in the rows, the relative sizes of
the logic blocks, and the interconnect/logic implementations
included at the top of FIG. 4 are purely exemplary. For
example, in an actual FPGA more than one adjacent row of
CLBs is typically included wherever the CLBs appear, to
facilitate the efficient implementation of user logic.

The methods and system are thought to be applicable to
initialization of a variety of programmable ICs. Other aspects
and features will be apparent to those skilled in the art from
consideration of the specification. For example, although
aspects and features may in some cases be described in indi-
vidual figures, it will be appreciated that features from one
figure can be combined with features of another figure even
though the combination is not explicitly shown or explicitly
described as a combination. The methods and system may be
implemented as one or more processors configured to execute
software, as an application specific integrated circuit (ASIC),
or as a logic on a programmable logic device. It is intended
that the specification and drawings be considered as examples
only, with a true scope of the invention being indicated by the
following claims.

What is claimed is:

1. A system-on-chip (SOC), comprising:

programmable hardware resources disposed on a first inte-
grated circuit (IC) die;

a configuration control circuit disposed on the first IC die
and configured and arranged to, in response to a con-
figuration data stream, program the programmable hard-
ware resources with the configuration data stream;

8

a memory circuit disposed on the first IC die;

a processor disposed on the first IC die, coupled to the
memory circuit and programmable hardware resources,
and configured and arranged to retrieve and execute

5 instructions from the memory circuit and communicate
data with the programmable hardware resources; and
aboot loader circuit disposed on the first IC die, configured
and arranged to:

search a first boot device, of a plurality of boot devices
coupled to and external to the first IC die, for an
uncorrupt boot image;

in response to failing to find an uncorrupt boot image in
the first boot device, search a second boot device of
the plurality of boot devices for an uncorrupt boot
image; and

in response to finding an uncorrupt boot image, load a set
of instructions included in the uncorrupt boot image
into the memory circuit.

2. The SOC of claim 1, further comprising:

a non-volatile memory coupled to the boot loader circuit;

and

wherein the boot loader circuit is configured and arranged

to search boot devices of the plurality of boot devices for

boot images in an order indicated by a list stored in the
non-volatile memory.

3. The SOC of claim 2, wherein the boot loader circuit is
further configured and arranged to modify the order of
devices indicated in the list in response to control signal
30 values provided to an input of the first IC die.

4. The SOC of claim 2, further comprising:

an e-fuse disposed on the first IC die; and

wherein the boot loader circuit is further configured and

arranged to:

prevent modification to the list stored in the non-volatile
memory in response to disruption to continuity of the
e-fuse; and

disrupt the continuity of the e-fuse in response to a
control signal provided to an input of the IC.

5. The SOC of claim 2, wherein the non-volatile memory is
an e-fuse memory.

6. The SOC of claim 1, wherein:

the boot loader circuit is configured and arranged to per-

form multiple boot stages including a first boot stage, in
which a first set of the programmable hardware
resources are configured, and a second boot stage, fol-
lowing the first boot stage, in which a second set of the
programmable hardware resources are configured, each
boot stage using a respective boot image to configure the
corresponding set of the programmable hardware
resources; and

in each of the multiple boot stages, the boot loader circuit

is configured and arranged to:

search for an uncorrupt boot image corresponding to the
boot stage in the first boot device; and

in response to failing to locate an uncorrupt boot image
corresponding to the boot stage in the first boot
device, searching the second boot device for anuncor-
rupt boot image corresponding to the boot stage.

7. The SOC of claim 1, wherein the boot loader circuit is
configured and arranged to determine if a boot image is cor-
rupt by:

calculating and verifying a checksum for a header of the

boot image; and

in response to verifying a checksum of the header, calcu-

lating and verifying a checksum of a data portion of the

boot image.

10

15

20

25

35

40

45

50

55

60

65

US 9,411,688 B1

9

8. The SOC of claim 1, wherein the plurality of boot
devices includes two or more of a quad SPI flash memory, a
NAND memory, a NOR memory, and an SD card memory.

9. The SOC of claim 1, wherein, the uncorrupt boot image
is an encrypted boot image.

10. The SOC of claim 1, wherein, the uncorrupt boot image
is an unencrypted boot image.

11. The SOC of claim 1, wherein the boot loader circuit is
configured and arranged to:

retrieve a master boot image from the first boot device; and

in response to the master boot image being corrupt, per-
form the search of the first boot device for an uncorrupt
boot image.

12. The SOC of claim 1, wherein the configuration data

stream is included in the uncorrupt boot image.
13. The SOC of claim 1, wherein the configuration data
stream is provided to the configuration control circuit without
the boot loader circuit.
14. An integrated circuit (IC), comprising:
programmable hardware resources disposed on a first IC
die;
a configuration control circuit disposed on the first IC die
and configured and arranged to, in response to a con-
figuration data stream, program the programmable hard-
ware resources with the configuration data stream; and
a boot loader circuit disposed on the first IC die and con-
figured and arranged to, at power-on of the IC:
search a first boot device, of a plurality of boot devices
disposed on respective IC dies coupled to the first IC
die, for an uncorrupt boot image;

in response to failing to find an uncorrupt boot image in
the first boot device, search a second boot device, of
the plurality of boot devices, for an uncorrupt boot
image; and

in response to finding an uncorrupt boot image, provide
a configuration data stream, included in the uncorrupt
boot image, to the configuration control circuit.

15. The IC of claim 14, further comprising:

amemory circuit disposed on the first IC and coupled to the
boot loader circuit;

aprocessor disposed on the first IC, coupled to the memory
circuit and programmable hardware resources, and con-
figured and arranged to retrieve and execute instructions
from the memory circuit and communicate data with the
programmable hardware resources; and

wherein the boot loader circuit is further configured and
arranged to load a set of instructions included in the
uncorrupt boot image into the memory circuit.

10

15

20

25

30

35

40

45

10

16. The IC of claim 14, further comprising:

a non-volatile memory coupled to the boot loader circuit;

and

wherein the boot loader circuit is configured and arranged

to:

search boot devices of the plurality of boot devices for
boot images in an order indicated by a list stored in the
non-volatile memory; and

modify the order of devices indicated in the list in
response to control signal values provided to an input
of the first IC die.

17. A method of configuring a system-on-chip (SOC) ona
first integrated circuit (IC) including programmable hardware
resources, a processor, and a memory, the method compris-
ing:

using a boot loader circuit disposed on a first IC:

searching a first boot device, of a plurality of boot
devices disposed on respective ICs and coupled to the
first IC, for an uncorrupt boot image;

in response to failing to find an uncorrupt boot image in
the first boot device, searching a second boot device,
of' the plurality of boot devices, for an uncorrupt boot
image; and

in response to finding an uncorrupt boot image;

loading a set of instructions included in the uncorrupt
boot image into the memory; and

in response to finding the uncorrupt boot image, pro-
viding a configuration data stream included in the
uncorrupt boot image to a configuration controller
disposed on the SOC;

using the processor, retrieving and executing the set of

instruction loaded into the memory; and

using the configuration controller, configuring the pro-

grammable hardware resources of the SOC with a con-
figuration data stream included in the uncorrupt boot
image.

18. The method of claim 17, wherein the boot loader circuit
is configured and arranged to search boot devices of the
plurality of boot devices for boot images in an order indicated
by a list stored in a non-volatile memory of the SOC.

19. The method of claim 18, wherein the boot loader circuit
is further configured and arranged to modify the order of
devices indicated in the list in response to control signal
values provided to an input of the SOC.

#* #* #* #* #*

